Voir la notice de l'article provenant de la source Numdam
Under some hypotheses, if the image by a morphism of a -power-free word contains a -power, we can reduce this word to obtain a new word with the same scheme. These hypotheses are satisfied in the case of uniform morphisms. This allows us to state that, when , a -power-free uniform morphism is a -power-free morphism.
Wlazinski, Francis 1
@article{ITA_2016__50_1_3_0, author = {Wlazinski, Francis}, title = {Reduction in non-($k + 1$)-power-free morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {3--20}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016006}, mrnumber = {3518156}, zbl = {1362.68243}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2016006/} }
TY - JOUR AU - Wlazinski, Francis TI - Reduction in non-($k + 1$)-power-free morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 3 EP - 20 VL - 50 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2016006/ DO - 10.1051/ita/2016006 LA - en ID - ITA_2016__50_1_3_0 ER -
%0 Journal Article %A Wlazinski, Francis %T Reduction in non-($k + 1$)-power-free morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 3-20 %V 50 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2016006/ %R 10.1051/ita/2016006 %G en %F ITA_2016__50_1_3_0
Wlazinski, Francis. Reduction in non-($k + 1$)-power-free morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Special issue dedicated to the 15th "Journées Montoises d'Informatique Théorique", Tome 50 (2016) no. 1, pp. 3-20. doi: 10.1051/ita/2016006
Cité par Sources :