An upper bound on the complexity of recognizable tree languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 2, pp. 121-137

Voir la notice de l'article provenant de la source Numdam

The third author noticed in his 1992 Ph.D. thesis [P. Simonnet, Automates et théorie descriptive (1992).] that every regular tree language of infinite trees is in a class ( D n ( Σ 2 0 ) ) for some natural number n1, where is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2 ω into the class Δ 2 1 , and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ 2 1 .

DOI : 10.1051/ita/2015002
Classification : 03E15, 03B70, 54H05, 68Q15, 68Q45
Keywords: Infinite trees, tree automaton, regular tree language, Cantor topology, topological complexity, Borel hierarchy, game quantifier, Wadge classes, Wadge degrees, universal sets, provably-Δ12

Finkel, Olivier 1 ; Lecomte, Dominique 2, 3 ; Simonnet, Pierre 4

1 Equipe de Logique Mathématique, Institut de Mathématiques de Jussieu – Paris Rive Gauche, CNRS et Université Paris Diderot Paris 7, Bâtiment Sophie Germain Case 7012, 75205 Paris cedex 13, France.
2 Projet Analyse FonctionnelleInstitut de Mathématiques de Jussieu – Paris Rive Gauche Université Pierre et Marie Curie Paris 6 Couloir 16-26, 4ème étage, Case 247, 4, place Jussieu, 75252 Paris cedex 05, France.
3 Université de Picardie,I.U.T. de l’Oise, site de Creil 13, allée de la faïencerie, 60107 Creil, France
4 UMR CNRS 6134, Faculté des Sciences, Université de Corse, Quartier Grossetti BP 52, 20250 Corte, France.
@article{ITA_2015__49_2_121_0,
     author = {Finkel, Olivier and Lecomte, Dominique and Simonnet, Pierre},
     title = {An upper bound on the complexity of recognizable tree languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {121--137},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/ita/2015002},
     mrnumber = {3373811},
     zbl = {1373.03066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2015002/}
}
TY  - JOUR
AU  - Finkel, Olivier
AU  - Lecomte, Dominique
AU  - Simonnet, Pierre
TI  - An upper bound on the complexity of recognizable tree languages
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2015
SP  - 121
EP  - 137
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2015002/
DO  - 10.1051/ita/2015002
LA  - en
ID  - ITA_2015__49_2_121_0
ER  - 
%0 Journal Article
%A Finkel, Olivier
%A Lecomte, Dominique
%A Simonnet, Pierre
%T An upper bound on the complexity of recognizable tree languages
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2015
%P 121-137
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2015002/
%R 10.1051/ita/2015002
%G en
%F ITA_2015__49_2_121_0
Finkel, Olivier; Lecomte, Dominique; Simonnet, Pierre. An upper bound on the complexity of recognizable tree languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 2, pp. 121-137. doi: 10.1051/ita/2015002

Cité par Sources :