Voir la notice de l'article provenant de la source Numdam
The cutwidth is an important graph-invariant in circuit layout designs. The cutwidth of a graph G is the minimum value of the maximum number of overlap edges when G is embedded into a line. A caterpillar is a tree which yields a path when all its leaves are removed. An iterated caterpillar is a tree which yields a caterpillar when all its leaves are removed. In this paper we present an exact formula for the cutwidth of the iterated caterpillars.
@article{ITA_2013__47_2_181_0, author = {Lin, Lan and Lin, Yixun}, title = {Cutwidth of iterated caterpillars}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {181--193}, publisher = {EDP-Sciences}, volume = {47}, number = {2}, year = {2013}, doi = {10.1051/ita/2012032}, mrnumber = {3072317}, zbl = {1266.05140}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2012032/} }
TY - JOUR AU - Lin, Lan AU - Lin, Yixun TI - Cutwidth of iterated caterpillars JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2013 SP - 181 EP - 193 VL - 47 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2012032/ DO - 10.1051/ita/2012032 LA - en ID - ITA_2013__47_2_181_0 ER -
%0 Journal Article %A Lin, Lan %A Lin, Yixun %T Cutwidth of iterated caterpillars %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2013 %P 181-193 %V 47 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2012032/ %R 10.1051/ita/2012032 %G en %F ITA_2013__47_2_181_0
Lin, Lan; Lin, Yixun. Cutwidth of iterated caterpillars. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 2, pp. 181-193. doi: 10.1051/ita/2012032
Cité par Sources :