Voir la notice de l'article provenant de la source Numdam
Joint 2-adic complexity is a new important index of the cryptographic security for multisequences. In this paper, we extend the usual Fourier transform to the case of multisequences and derive an upper bound for the joint 2-adic complexity. Furthermore, for the multisequences with pn-period, we discuss the relation between sequences and their Fourier coefficients. Based on the relation, we determine a lower bound for the number of multisequences with given joint 2-adic complexity.
@article{ITA_2012__46_3_401_0, author = {Zhao, Lu and Wen, Qiao-Yan}, title = {On the joint 2-adic complexity of binary multisequences}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {401--412}, publisher = {EDP-Sciences}, volume = {46}, number = {3}, year = {2012}, doi = {10.1051/ita/2012011}, mrnumber = {2981676}, zbl = {1277.94010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2012011/} }
TY - JOUR AU - Zhao, Lu AU - Wen, Qiao-Yan TI - On the joint 2-adic complexity of binary multisequences JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 401 EP - 412 VL - 46 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2012011/ DO - 10.1051/ita/2012011 LA - en ID - ITA_2012__46_3_401_0 ER -
%0 Journal Article %A Zhao, Lu %A Wen, Qiao-Yan %T On the joint 2-adic complexity of binary multisequences %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 401-412 %V 46 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2012011/ %R 10.1051/ita/2012011 %G en %F ITA_2012__46_3_401_0
Zhao, Lu; Wen, Qiao-Yan. On the joint 2-adic complexity of binary multisequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 3, pp. 401-412. doi: 10.1051/ita/2012011
Cité par Sources :