Voir la notice de l'article provenant de la source Numdam
This paper presents a new lower bound for the recursive algorithm for solving parity games which is induced by the constructive proof of memoryless determinacy by Zielonka. We outline a family of games of linear size on which the algorithm requires exponential time.
@article{ITA_2011__45_4_449_0, author = {Friedmann, Oliver}, title = {Recursive algorithm for parity games requires exponential time}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {449--457}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/ita/2011124}, mrnumber = {2876116}, zbl = {1232.91064}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2011124/} }
TY - JOUR AU - Friedmann, Oliver TI - Recursive algorithm for parity games requires exponential time JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 449 EP - 457 VL - 45 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2011124/ DO - 10.1051/ita/2011124 LA - en ID - ITA_2011__45_4_449_0 ER -
%0 Journal Article %A Friedmann, Oliver %T Recursive algorithm for parity games requires exponential time %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 449-457 %V 45 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2011124/ %R 10.1051/ita/2011124 %G en %F ITA_2011__45_4_449_0
Friedmann, Oliver. Recursive algorithm for parity games requires exponential time. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 4, pp. 449-457. doi: 10.1051/ita/2011124
Cité par Sources :