The Fibonacci automorphism of free Burnside groups
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 3, pp. 301-309
We prove that the Fibonacci morphism is an automorphism of infinite order of free Burnside groups for all odd and even .
DOI :
10.1051/ita/2011118
Classification :
20F28, 20E36, 20F50, 20M05
Keywords: free periodic groups, Burnside groups, group automorphisms, Fibonacci morphism, Fibonacci sequence, Fibonacci word, golden ratio
Keywords: free periodic groups, Burnside groups, group automorphisms, Fibonacci morphism, Fibonacci sequence, Fibonacci word, golden ratio
@article{ITA_2011__45_3_301_0,
author = {Pahlevanyan, Ashot S.},
title = {The {Fibonacci} automorphism of free {Burnside} groups},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {301--309},
year = {2011},
publisher = {EDP-Sciences},
volume = {45},
number = {3},
doi = {10.1051/ita/2011118},
mrnumber = {2836491},
zbl = {1227.20038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2011118/}
}
TY - JOUR AU - Pahlevanyan, Ashot S. TI - The Fibonacci automorphism of free Burnside groups JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 301 EP - 309 VL - 45 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2011118/ DO - 10.1051/ita/2011118 LA - en ID - ITA_2011__45_3_301_0 ER -
%0 Journal Article %A Pahlevanyan, Ashot S. %T The Fibonacci automorphism of free Burnside groups %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 301-309 %V 45 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2011118/ %R 10.1051/ita/2011118 %G en %F ITA_2011__45_3_301_0
Pahlevanyan, Ashot S. The Fibonacci automorphism of free Burnside groups. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 3, pp. 301-309. doi: 10.1051/ita/2011118
Cité par Sources :