Unique decipherability in the additive monoid of sets of numbers
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 2, pp. 225-234

Voir la notice de l'article provenant de la source Numdam

Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all aA and bB. We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.

DOI : 10.1051/ita/2011018
Classification : 68R05, 68Q45
Keywords: unique decipherability, rational set, sumset
@article{ITA_2011__45_2_225_0,
     author = {Saarela, Aleksi},
     title = {Unique decipherability in the additive monoid of sets of numbers},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {225--234},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {2},
     year = {2011},
     doi = {10.1051/ita/2011018},
     mrnumber = {2811655},
     zbl = {1218.68108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2011018/}
}
TY  - JOUR
AU  - Saarela, Aleksi
TI  - Unique decipherability in the additive monoid of sets of numbers
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2011
SP  - 225
EP  - 234
VL  - 45
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2011018/
DO  - 10.1051/ita/2011018
LA  - en
ID  - ITA_2011__45_2_225_0
ER  - 
%0 Journal Article
%A Saarela, Aleksi
%T Unique decipherability in the additive monoid of sets of numbers
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2011
%P 225-234
%V 45
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2011018/
%R 10.1051/ita/2011018
%G en
%F ITA_2011__45_2_225_0
Saarela, Aleksi. Unique decipherability in the additive monoid of sets of numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 2, pp. 225-234. doi: 10.1051/ita/2011018

Cité par Sources :