Voir la notice de l'article provenant de la source Numdam
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
@article{ITA_2011__45_2_225_0, author = {Saarela, Aleksi}, title = {Unique decipherability in the additive monoid of sets of numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {225--234}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/ita/2011018}, mrnumber = {2811655}, zbl = {1218.68108}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2011018/} }
TY - JOUR AU - Saarela, Aleksi TI - Unique decipherability in the additive monoid of sets of numbers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 225 EP - 234 VL - 45 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2011018/ DO - 10.1051/ita/2011018 LA - en ID - ITA_2011__45_2_225_0 ER -
%0 Journal Article %A Saarela, Aleksi %T Unique decipherability in the additive monoid of sets of numbers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 225-234 %V 45 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2011018/ %R 10.1051/ita/2011018 %G en %F ITA_2011__45_2_225_0
Saarela, Aleksi. Unique decipherability in the additive monoid of sets of numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 2, pp. 225-234. doi: 10.1051/ita/2011018
Cité par Sources :