The code problem for directed figures
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 4, pp. 489-506

Voir la notice de l'article provenant de la source Numdam

We consider directed figures defined as labelled polyominoes with designated start and end points, with two types of catenation operations. We are especially interested in codicity verification for sets of figures, and we show that depending on the catenation type the question whether a given set of directed figures is a code is decidable or not. In the former case we give a constructive proof which leads to a straightforward algorithm.

DOI : 10.1051/ita/2011005
Classification : 68R15, 68R99
Keywords: directed figures, variable-length codes, codicity verification, Sardinas-Patterson algorithm
@article{ITA_2010__44_4_489_0,
     author = {Kolarz, Micha{\l}},
     title = {The code problem for directed figures},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {489--506},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {4},
     year = {2010},
     doi = {10.1051/ita/2011005},
     mrnumber = {2775408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2011005/}
}
TY  - JOUR
AU  - Kolarz, Michał
TI  - The code problem for directed figures
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2010
SP  - 489
EP  - 506
VL  - 44
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2011005/
DO  - 10.1051/ita/2011005
LA  - en
ID  - ITA_2010__44_4_489_0
ER  - 
%0 Journal Article
%A Kolarz, Michał
%T The code problem for directed figures
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2010
%P 489-506
%V 44
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2011005/
%R 10.1051/ita/2011005
%G en
%F ITA_2010__44_4_489_0
Kolarz, Michał. The code problem for directed figures. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 4, pp. 489-506. doi: 10.1051/ita/2011005

Cité par Sources :