Voir la notice de l'article provenant de la source Numdam
The repetition threshold is a measure of the extent to which there need to be consecutive (partial) repetitions of finite words within infinite words over alphabets of various sizes. Dejean's Conjecture, which has been recently proven, provides this threshold for all alphabet sizes. Motivated by a question of Krieger, we deal here with the analogous threshold when the infinite word is restricted to be a D0L word. Our main result is that, asymptotically, this threshold does not exceed the unrestricted threshold by more than a little.
@article{ITA_2010__44_3_281_0, author = {Goldstein, Ilya}, title = {On the {D0L} repetition threshold}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {281--292}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/ita/2010015}, mrnumber = {2761520}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2010015/} }
TY - JOUR AU - Goldstein, Ilya TI - On the D0L repetition threshold JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 281 EP - 292 VL - 44 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2010015/ DO - 10.1051/ita/2010015 LA - en ID - ITA_2010__44_3_281_0 ER -
%0 Journal Article %A Goldstein, Ilya %T On the D0L repetition threshold %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 281-292 %V 44 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2010015/ %R 10.1051/ita/2010015 %G en %F ITA_2010__44_3_281_0
Goldstein, Ilya. On the D0L repetition threshold. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 281-292. doi: 10.1051/ita/2010015
Cité par Sources :