Voir la notice de l'article provenant de la source Numdam
Richomme asked the following question: what is the infimum of the real numbers α > 2 such that there exists an infinite word that avoids α-powers but contains arbitrarily large squares beginning at every position? We resolve this question in the case of a binary alphabet by showing that the answer is α = 7/3.
@article{ITA_2010__44_1_113_0, author = {Currie, James and Rampersad, Narad}, title = {Infinite words containing squares at every position}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {113--124}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/ita/2010007}, mrnumber = {2604937}, zbl = {1184.68370}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2010007/} }
TY - JOUR AU - Currie, James AU - Rampersad, Narad TI - Infinite words containing squares at every position JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 113 EP - 124 VL - 44 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2010007/ DO - 10.1051/ita/2010007 LA - en ID - ITA_2010__44_1_113_0 ER -
%0 Journal Article %A Currie, James %A Rampersad, Narad %T Infinite words containing squares at every position %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 113-124 %V 44 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2010007/ %R 10.1051/ita/2010007 %G en %F ITA_2010__44_1_113_0
Currie, James; Rampersad, Narad. Infinite words containing squares at every position. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 113-124. doi: 10.1051/ita/2010007
Cité par Sources :