Highly undecidable problems for infinite computations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 339-364

Voir la notice de l'article provenant de la source Numdam

We show that many classical decision problems about 1-counter ω-languages, context free ω-languages, or infinitary rational relations, are Π 2 1 -complete, hence located at the second level of the analytical hierarchy, and “highly undecidable”. In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π 2 1 -complete for context-free ω-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter ω-languages, context free ω-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.

DOI : 10.1051/ita/2009001
Classification : 68Q05, 68Q45, 03D05
Keywords: infinite computations, $1$-counter-automata, $2$-tape automata, decision problems, arithmetical hierarchy, analytical hierarchy, complete sets, highly undecidable problems
@article{ITA_2009__43_2_339_0,
     author = {Finkel, Olivier},
     title = {Highly undecidable problems for infinite computations},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {339--364},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {2},
     year = {2009},
     doi = {10.1051/ita/2009001},
     mrnumber = {2512263},
     zbl = {1171.03024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2009001/}
}
TY  - JOUR
AU  - Finkel, Olivier
TI  - Highly undecidable problems for infinite computations
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2009
SP  - 339
EP  - 364
VL  - 43
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2009001/
DO  - 10.1051/ita/2009001
LA  - en
ID  - ITA_2009__43_2_339_0
ER  - 
%0 Journal Article
%A Finkel, Olivier
%T Highly undecidable problems for infinite computations
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2009
%P 339-364
%V 43
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2009001/
%R 10.1051/ita/2009001
%G en
%F ITA_2009__43_2_339_0
Finkel, Olivier. Highly undecidable problems for infinite computations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 339-364. doi: 10.1051/ita/2009001

Cité par Sources :