Γ-convergence approach to variational problems in perforated domains with Fourier boundary conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 148-175

Voir la notice de l'article provenant de la source Numdam

The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound, we show that the studied functional has a nontrivial Γ-limit and the corresponding variational problem admits homogenization.

DOI : 10.1051/cocv:2008073
Classification : 35B27, 74Q05
Keywords: homogenization, Γ-convergence, perforated medium
@article{COCV_2010__16_1_148_0,
     author = {Chiad\`o Piat, Valeria and Piatnitski, Andrey},
     title = {$\Gamma $-convergence approach to variational problems in perforated domains with {Fourier} boundary conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {148--175},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {2010},
     doi = {10.1051/cocv:2008073},
     mrnumber = {2598093},
     zbl = {1188.35015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008073/}
}
TY  - JOUR
AU  - Chiadò Piat, Valeria
AU  - Piatnitski, Andrey
TI  - $\Gamma $-convergence approach to variational problems in perforated domains with Fourier boundary conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 148
EP  - 175
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008073/
DO  - 10.1051/cocv:2008073
LA  - en
ID  - COCV_2010__16_1_148_0
ER  - 
%0 Journal Article
%A Chiadò Piat, Valeria
%A Piatnitski, Andrey
%T $\Gamma $-convergence approach to variational problems in perforated domains with Fourier boundary conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 148-175
%V 16
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008073/
%R 10.1051/cocv:2008073
%G en
%F COCV_2010__16_1_148_0
Chiadò Piat, Valeria; Piatnitski, Andrey. $\Gamma $-convergence approach to variational problems in perforated domains with Fourier boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 148-175. doi: 10.1051/cocv:2008073

Cité par Sources :