Voir la notice de l'article provenant de la source Numdam
This paper is concerned with the following periodic hamiltonian elliptic system Assuming the potential V is periodic and 0 lies in a gap of , is periodic in x and asymptotically quadratic in , existence and multiplicity of solutions are obtained via variational approach.
@article{COCV_2010__16_1_77_0, author = {Zhao, Fukun and Zhao, Leiga and Ding, Yanheng}, title = {Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {77--91}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008064}, mrnumber = {2598089}, zbl = {1189.35091}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008064/} }
TY - JOUR AU - Zhao, Fukun AU - Zhao, Leiga AU - Ding, Yanheng TI - Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 77 EP - 91 VL - 16 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008064/ DO - 10.1051/cocv:2008064 LA - en ID - COCV_2010__16_1_77_0 ER -
%0 Journal Article %A Zhao, Fukun %A Zhao, Leiga %A Ding, Yanheng %T Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 77-91 %V 16 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008064/ %R 10.1051/cocv:2008064 %G en %F COCV_2010__16_1_77_0
Zhao, Fukun; Zhao, Leiga; Ding, Yanheng. Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 77-91. doi: 10.1051/cocv:2008064
Cité par Sources :