On the integral representation of relaxed functionals with convex bounded constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 37-57

Voir la notice de l'article provenant de la source Numdam

We study the integral representation of relaxed functionals in the multi-dimensional calculus of variations, for integrands which are finite in a convex bounded set with nonempty interior and infinite elsewhere.

DOI : 10.1051/cocv:2008063
Classification : 49J45
Keywords: relaxation, convex constraints, integral representation
@article{COCV_2010__16_1_37_0,
     author = {Anza Hafsa, Omar},
     title = {On the integral representation of relaxed functionals with convex bounded constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {37--57},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {2010},
     doi = {10.1051/cocv:2008063},
     mrnumber = {2598087},
     zbl = {1183.49014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008063/}
}
TY  - JOUR
AU  - Anza Hafsa, Omar
TI  - On the integral representation of relaxed functionals with convex bounded constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 37
EP  - 57
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008063/
DO  - 10.1051/cocv:2008063
LA  - en
ID  - COCV_2010__16_1_37_0
ER  - 
%0 Journal Article
%A Anza Hafsa, Omar
%T On the integral representation of relaxed functionals with convex bounded constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 37-57
%V 16
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008063/
%R 10.1051/cocv:2008063
%G en
%F COCV_2010__16_1_37_0
Anza Hafsa, Omar. On the integral representation of relaxed functionals with convex bounded constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 37-57. doi: 10.1051/cocv:2008063

Cité par Sources :