Voir la notice de l'article provenant de la source Numdam
In this paper we study homogenization for a class of monotone systems of first-order time-dependent periodic Hamilton-Jacobi equations. We characterize the hamiltonians of the limit problem by appropriate cell problems. Hence we show the uniform convergence of the solution of the oscillating systems to the bounded uniformly continuous solution of the homogenized system.
@article{COCV_2010__16_1_58_0, author = {Camilli, Fabio and Ley, Olivier and Loreti, Paola}, title = {Homogenization of monotone systems of {Hamilton-Jacobi} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {58--76}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008061}, mrnumber = {2598088}, zbl = {1187.35008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008061/} }
TY - JOUR AU - Camilli, Fabio AU - Ley, Olivier AU - Loreti, Paola TI - Homogenization of monotone systems of Hamilton-Jacobi equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 58 EP - 76 VL - 16 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008061/ DO - 10.1051/cocv:2008061 LA - en ID - COCV_2010__16_1_58_0 ER -
%0 Journal Article %A Camilli, Fabio %A Ley, Olivier %A Loreti, Paola %T Homogenization of monotone systems of Hamilton-Jacobi equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 58-76 %V 16 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008061/ %R 10.1051/cocv:2008061 %G en %F COCV_2010__16_1_58_0
Camilli, Fabio; Ley, Olivier; Loreti, Paola. Homogenization of monotone systems of Hamilton-Jacobi equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 58-76. doi: 10.1051/cocv:2008061
Cité par Sources :