A converse to the Lions-Stampacchia theorem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 810-817

Voir la notice de l'article provenant de la source Numdam

In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.

DOI : 10.1051/cocv:2008054
Classification : 47H05, 52A41, 39B82
Keywords: Lions-Stampacchia theorem, variational inequality, pseudo-monotone operator
@article{COCV_2009__15_4_810_0,
     author = {Ernst, Emil and Th\'era, Michel},
     title = {A converse to the {Lions-Stampacchia} theorem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {810--817},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {4},
     year = {2009},
     doi = {10.1051/cocv:2008054},
     mrnumber = {2567246},
     zbl = {1176.47050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008054/}
}
TY  - JOUR
AU  - Ernst, Emil
AU  - Théra, Michel
TI  - A converse to the Lions-Stampacchia theorem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 810
EP  - 817
VL  - 15
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008054/
DO  - 10.1051/cocv:2008054
LA  - en
ID  - COCV_2009__15_4_810_0
ER  - 
%0 Journal Article
%A Ernst, Emil
%A Théra, Michel
%T A converse to the Lions-Stampacchia theorem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 810-817
%V 15
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008054/
%R 10.1051/cocv:2008054
%G en
%F COCV_2009__15_4_810_0
Ernst, Emil; Théra, Michel. A converse to the Lions-Stampacchia theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 810-817. doi: 10.1051/cocv:2008054

Cité par Sources :