Voir la notice de l'article provenant de la source Numdam
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem's data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified expression. Our approach is based on variational techniques applied to certain difference of convex functions related to the model. Some results of [M.J. Cánovas et al., J. Optim. Theory Appl. (2008) Online First] (which go back to [M.J. Cánovas, J. Global Optim. 41 (2008) 1-13] and [Ioffe, Math. Surveys 55 (2000) 501-558; Control Cybern. 32 (2003) 543-554]) constitute the starting point of the present work.
@article{COCV_2009__15_4_763_0, author = {C\'anovas, Mar{\'\i}a J. and Hantoute, Abderrahim and L\'opez, Marco A. and Parra, Juan}, title = {Lipschitz modulus in convex semi-infinite optimization via d.c. functions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {763--781}, publisher = {EDP-Sciences}, volume = {15}, number = {4}, year = {2009}, doi = {10.1051/cocv:2008052}, mrnumber = {2567244}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008052/} }
TY - JOUR AU - Cánovas, María J. AU - Hantoute, Abderrahim AU - López, Marco A. AU - Parra, Juan TI - Lipschitz modulus in convex semi-infinite optimization via d.c. functions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 763 EP - 781 VL - 15 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008052/ DO - 10.1051/cocv:2008052 LA - en ID - COCV_2009__15_4_763_0 ER -
%0 Journal Article %A Cánovas, María J. %A Hantoute, Abderrahim %A López, Marco A. %A Parra, Juan %T Lipschitz modulus in convex semi-infinite optimization via d.c. functions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 763-781 %V 15 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008052/ %R 10.1051/cocv:2008052 %G en %F COCV_2009__15_4_763_0
Cánovas, María J.; Hantoute, Abderrahim; López, Marco A.; Parra, Juan. Lipschitz modulus in convex semi-infinite optimization via d.c. functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 763-781. doi: 10.1051/cocv:2008052
Cité par Sources :