Minimal surfaces in sub-riemannian manifolds and structure of their singular sets in the (2,3) case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 839-862

Voir la notice de l'article provenant de la source Numdam

We study minimal surfaces in sub-riemannian manifolds with sub-riemannian structures of co-rank one. These surfaces can be defined as the critical points of the so-called horizontal area functional associated with the canonical horizontal area form. We derive the intrinsic equation in the general case and then consider in greater detail 2-dimensional surfaces in contact manifolds of dimension 3. We show that in this case minimal surfaces are projections of a special class of 2-dimensional surfaces in the horizontal spherical bundle over the base manifold. The singularities of minimal surfaces turn out to be the singularities of this projection, and we give a complete local classification of them. We illustrate our results by examples in the Heisenberg group and the group of roto-translations.

DOI : 10.1051/cocv:2008051
Classification : 53C17, 32S25
Keywords: sub-riemannian geometry, minimal surfaces, singular sets
@article{COCV_2009__15_4_839_0,
     author = {Shcherbakova, Nataliya},
     title = {Minimal surfaces in sub-riemannian manifolds and structure of their singular sets in the $(2,3)$ case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {839--862},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {4},
     year = {2009},
     doi = {10.1051/cocv:2008051},
     mrnumber = {2567248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008051/}
}
TY  - JOUR
AU  - Shcherbakova, Nataliya
TI  - Minimal surfaces in sub-riemannian manifolds and structure of their singular sets in the $(2,3)$ case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 839
EP  - 862
VL  - 15
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008051/
DO  - 10.1051/cocv:2008051
LA  - en
ID  - COCV_2009__15_4_839_0
ER  - 
%0 Journal Article
%A Shcherbakova, Nataliya
%T Minimal surfaces in sub-riemannian manifolds and structure of their singular sets in the $(2,3)$ case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 839-862
%V 15
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008051/
%R 10.1051/cocv:2008051
%G en
%F COCV_2009__15_4_839_0
Shcherbakova, Nataliya. Minimal surfaces in sub-riemannian manifolds and structure of their singular sets in the $(2,3)$ case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 839-862. doi: 10.1051/cocv:2008051

Cité par Sources :