Lipschitz stability in the determination of the principal part of a parabolic equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 525-554

Voir la notice de l'article provenant de la source Numdam

Let y(h)(t,x) be one solution to

t y(t,x)- i,j=1 n j (a ij (x) i y(t,x))=h(t,x),0<t<T,xΩ
with a non-homogeneous term h, and y| (0,T)×Ω =0, where Ω n is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions a ij by { ν y(h )| (0,T)×Γ 0 , y(h )(θ,·)} 1 0 after selecting input sources h 1 ,...,h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0<θ<T and 0 . In the case of 0 =(n+1) 2 n/2, we prove the Lipschitz stability in the inverse problem if we choose (h 1 ,...,h 0 ) from a set {C 0 ((0,T)×ω)} 0 with an arbitrarily fixed subdomain ωΩ. Moreover we can take 0 =(n+3)n/2 by making special choices for h , 1 0 . The proof is based on a Carleman estimate.

DOI : 10.1051/cocv:2008043
Classification : 35R30, 35K20
Keywords: inverse parabolic problem, Carleman estimate, Lipschitz stability
@article{COCV_2009__15_3_525_0,
     author = {Yuan, Ganghua and Yamamoto, Masahiro},
     title = {Lipschitz stability in the determination of the principal part of a parabolic equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {525--554},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {3},
     year = {2009},
     doi = {10.1051/cocv:2008043},
     mrnumber = {2542571},
     zbl = {1182.35238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008043/}
}
TY  - JOUR
AU  - Yuan, Ganghua
AU  - Yamamoto, Masahiro
TI  - Lipschitz stability in the determination of the principal part of a parabolic equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 525
EP  - 554
VL  - 15
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008043/
DO  - 10.1051/cocv:2008043
LA  - en
ID  - COCV_2009__15_3_525_0
ER  - 
%0 Journal Article
%A Yuan, Ganghua
%A Yamamoto, Masahiro
%T Lipschitz stability in the determination of the principal part of a parabolic equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 525-554
%V 15
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008043/
%R 10.1051/cocv:2008043
%G en
%F COCV_2009__15_3_525_0
Yuan, Ganghua; Yamamoto, Masahiro. Lipschitz stability in the determination of the principal part of a parabolic equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 525-554. doi: 10.1051/cocv:2008043

Cité par Sources :