Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 403-425

Voir la notice de l'article provenant de la source Numdam

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes and, in particular, exponential stability of heat exchangers. Through concrete examples we show how Lyapunov’s second method may be extended to stability analysis of nonlinear hyperbolic PDE. Meanwhile we explain how the method is adapted to the framework of Banach spaces L p , 1<p.

DOI : 10.1051/cocv:2008033
Classification : 37L15, 37L45, 93C20
Keywords: hyperbolic symmetric systems, partial differential equations, exponential stability, strongly continuous semigroups, Lyapunov functionals, heat exchangers
@article{COCV_2009__15_2_403_0,
     author = {Tchousso, Abdoua and Besson, Thibaut and Xu, Cheng-Zhong},
     title = {Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using {Lyapunov's} second method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {403--425},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {2},
     year = {2009},
     doi = {10.1051/cocv:2008033},
     mrnumber = {2513092},
     zbl = {1167.37036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008033/}
}
TY  - JOUR
AU  - Tchousso, Abdoua
AU  - Besson, Thibaut
AU  - Xu, Cheng-Zhong
TI  - Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 403
EP  - 425
VL  - 15
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008033/
DO  - 10.1051/cocv:2008033
LA  - en
ID  - COCV_2009__15_2_403_0
ER  - 
%0 Journal Article
%A Tchousso, Abdoua
%A Besson, Thibaut
%A Xu, Cheng-Zhong
%T Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 403-425
%V 15
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008033/
%R 10.1051/cocv:2008033
%G en
%F COCV_2009__15_2_403_0
Tchousso, Abdoua; Besson, Thibaut; Xu, Cheng-Zhong. Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 403-425. doi: 10.1051/cocv:2008033

Cité par Sources :