Dirichlet problems with singular and gradient quadratic lower order terms
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 411-426

Voir la notice de l'article provenant de la source Numdam

We present a revisited form of a result proved in [Boccardo, Murat and Puel, Portugaliae Math. 41 (1982) 507-534] and then we adapt the new proof in order to show the existence for solutions of quasilinear elliptic problems also if the lower order term has quadratic dependence on the gradient and singular dependence on the solution.

DOI : 10.1051/cocv:2008031
Classification : 35J20, 35J25, 35J65
Keywords: quadratic gradient, singular lower order term
@article{COCV_2008__14_3_411_0,
     author = {Boccardo, Lucio},
     title = {Dirichlet problems with singular and gradient quadratic lower order terms},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {411--426},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     doi = {10.1051/cocv:2008031},
     mrnumber = {2434059},
     zbl = {1147.35034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008031/}
}
TY  - JOUR
AU  - Boccardo, Lucio
TI  - Dirichlet problems with singular and gradient quadratic lower order terms
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 411
EP  - 426
VL  - 14
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008031/
DO  - 10.1051/cocv:2008031
LA  - en
ID  - COCV_2008__14_3_411_0
ER  - 
%0 Journal Article
%A Boccardo, Lucio
%T Dirichlet problems with singular and gradient quadratic lower order terms
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 411-426
%V 14
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008031/
%R 10.1051/cocv:2008031
%G en
%F COCV_2008__14_3_411_0
Boccardo, Lucio. Dirichlet problems with singular and gradient quadratic lower order terms. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 411-426. doi: 10.1051/cocv:2008031

Cité par Sources :