Voir la notice de l'article provenant de la source Numdam
Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving norms obtained by Nečas and on the general framework of -convergence theory.
@article{COCV_2008__14_4_802_0, author = {Davini, Cesare and Paroni, Roberto}, title = {External approximation of first order variational problems via $W^{-1, p}$ estimates}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {802--824}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008011}, mrnumber = {2451798}, zbl = {1154.65054}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008011/} }
TY - JOUR AU - Davini, Cesare AU - Paroni, Roberto TI - External approximation of first order variational problems via $W^{-1, p}$ estimates JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 802 EP - 824 VL - 14 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008011/ DO - 10.1051/cocv:2008011 LA - en ID - COCV_2008__14_4_802_0 ER -
%0 Journal Article %A Davini, Cesare %A Paroni, Roberto %T External approximation of first order variational problems via $W^{-1, p}$ estimates %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 802-824 %V 14 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008011/ %R 10.1051/cocv:2008011 %G en %F COCV_2008__14_4_802_0
Davini, Cesare; Paroni, Roberto. External approximation of first order variational problems via $W^{-1, p}$ estimates. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 802-824. doi: 10.1051/cocv:2008011
Cité par Sources :