Quasiconvex functions can be approximated by quasiconvex polynomials
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 795-801

Voir la notice de l'article provenant de la source Numdam

Let W be a function from the real m×n-matrices to the real numbers. If W is quasiconvex in the sense of the calculus of variations, then we show that W can be approximated locally uniformly by quasiconvex polynomials.

DOI : 10.1051/cocv:2008010
Classification : 49J45, 41A10
Keywords: Stone-Weierstrass theorem, locally uniform convergence
@article{COCV_2008__14_4_795_0,
     author = {Heinz, Sebastian},
     title = {Quasiconvex functions can be approximated by quasiconvex polynomials},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {795--801},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {4},
     year = {2008},
     doi = {10.1051/cocv:2008010},
     mrnumber = {2451797},
     zbl = {1148.49012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/}
}
TY  - JOUR
AU  - Heinz, Sebastian
TI  - Quasiconvex functions can be approximated by quasiconvex polynomials
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 795
EP  - 801
VL  - 14
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/
DO  - 10.1051/cocv:2008010
LA  - en
ID  - COCV_2008__14_4_795_0
ER  - 
%0 Journal Article
%A Heinz, Sebastian
%T Quasiconvex functions can be approximated by quasiconvex polynomials
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 795-801
%V 14
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/
%R 10.1051/cocv:2008010
%G en
%F COCV_2008__14_4_795_0
Heinz, Sebastian. Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 795-801. doi: 10.1051/cocv:2008010

Cité par Sources :