Voir la notice de l'article provenant de la source Numdam
Let be a function from the real mn-matrices to the real numbers. If is quasiconvex in the sense of the calculus of variations, then we show that can be approximated locally uniformly by quasiconvex polynomials.
@article{COCV_2008__14_4_795_0, author = {Heinz, Sebastian}, title = {Quasiconvex functions can be approximated by quasiconvex polynomials}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {795--801}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008010}, mrnumber = {2451797}, zbl = {1148.49012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/} }
TY - JOUR AU - Heinz, Sebastian TI - Quasiconvex functions can be approximated by quasiconvex polynomials JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 795 EP - 801 VL - 14 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/ DO - 10.1051/cocv:2008010 LA - en ID - COCV_2008__14_4_795_0 ER -
%0 Journal Article %A Heinz, Sebastian %T Quasiconvex functions can be approximated by quasiconvex polynomials %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 795-801 %V 14 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/ %R 10.1051/cocv:2008010 %G en %F COCV_2008__14_4_795_0
Heinz, Sebastian. Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 795-801. doi: 10.1051/cocv:2008010
Cité par Sources :