Quasiconvex functions can be approximated by quasiconvex polynomials
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 795-801
Cet article a éte moissonné depuis la source Numdam
Let be a function from the real mn-matrices to the real numbers. If is quasiconvex in the sense of the calculus of variations, then we show that can be approximated locally uniformly by quasiconvex polynomials.
DOI :
10.1051/cocv:2008010
Classification :
49J45, 41A10
Keywords: Stone-Weierstrass theorem, locally uniform convergence
Keywords: Stone-Weierstrass theorem, locally uniform convergence
@article{COCV_2008__14_4_795_0,
author = {Heinz, Sebastian},
title = {Quasiconvex functions can be approximated by quasiconvex polynomials},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {795--801},
year = {2008},
publisher = {EDP-Sciences},
volume = {14},
number = {4},
doi = {10.1051/cocv:2008010},
mrnumber = {2451797},
zbl = {1148.49012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/}
}
TY - JOUR AU - Heinz, Sebastian TI - Quasiconvex functions can be approximated by quasiconvex polynomials JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 795 EP - 801 VL - 14 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/ DO - 10.1051/cocv:2008010 LA - en ID - COCV_2008__14_4_795_0 ER -
%0 Journal Article %A Heinz, Sebastian %T Quasiconvex functions can be approximated by quasiconvex polynomials %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 795-801 %V 14 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008010/ %R 10.1051/cocv:2008010 %G en %F COCV_2008__14_4_795_0
Heinz, Sebastian. Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 795-801. doi: 10.1051/cocv:2008010
Cité par Sources :