Voir la notice de l'article provenant de la source Numdam
It is shown that the Lagrange's equations for a lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.
@article{COCV_2008__14_2_356_0, author = {Mart{\'\i}nez, Eduardo}, title = {Variational calculus on {Lie} algebroids}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {356--380}, publisher = {EDP-Sciences}, volume = {14}, number = {2}, year = {2008}, doi = {10.1051/cocv:2007056}, mrnumber = {2394515}, zbl = {1135.49027}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007056/} }
TY - JOUR AU - Martínez, Eduardo TI - Variational calculus on Lie algebroids JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 356 EP - 380 VL - 14 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007056/ DO - 10.1051/cocv:2007056 LA - en ID - COCV_2008__14_2_356_0 ER -
%0 Journal Article %A Martínez, Eduardo %T Variational calculus on Lie algebroids %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 356-380 %V 14 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007056/ %R 10.1051/cocv:2007056 %G en %F COCV_2008__14_2_356_0
Martínez, Eduardo. Variational calculus on Lie algebroids. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 356-380. doi: 10.1051/cocv:2007056
Cité par Sources :