Curl bounds grad on SO(3)
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 148-159

Voir la notice de l'article provenant de la source Numdam

Let F p GL (3) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [F p ]·(F p ) T applied to rotations controls the gradient in the sense that pointwise RC 1 ( 3 , SO (3)): Curl [R]·R T 𝕄 3×3 2 1 2DR 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461-1506; John, Comme Pure Appl. Math. 14 (1961) 391-413; Reshetnyak, Siberian Math. J. 8 (1967) 631-653)] as well as an associated linearized theorem saying that AC 1 ( 3 ,𝔰𝔬(3)): Curl [A] 𝕄 3×3 2 1 2DA 27 2 = axl [A] 9 2 .

DOI : 10.1051/cocv:2007050
Classification : 74A35, 74E15, 74G65, 74N15, 53AXX, 53B05
Keywords: rotations, polar-materials, microstructure, dislocation density, rigidity, differential geometry, structured continua
@article{COCV_2008__14_1_148_0,
     author = {M\"unch, Ingo and Neff, Patrizio},
     title = {Curl bounds grad on {SO(3)}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {148--159},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {1},
     year = {2008},
     doi = {10.1051/cocv:2007050},
     mrnumber = {2375754},
     zbl = {1139.74008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007050/}
}
TY  - JOUR
AU  - Münch, Ingo
AU  - Neff, Patrizio
TI  - Curl bounds grad on SO(3)
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 148
EP  - 159
VL  - 14
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007050/
DO  - 10.1051/cocv:2007050
LA  - en
ID  - COCV_2008__14_1_148_0
ER  - 
%0 Journal Article
%A Münch, Ingo
%A Neff, Patrizio
%T Curl bounds grad on SO(3)
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 148-159
%V 14
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007050/
%R 10.1051/cocv:2007050
%G en
%F COCV_2008__14_1_148_0
Münch, Ingo; Neff, Patrizio. Curl bounds grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 148-159. doi: 10.1051/cocv:2007050

Cité par Sources :