Voir la notice de l'article provenant de la source Numdam
Let be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form applied to rotations controls the gradient in the sense that pointwise . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461-1506; John, Comme Pure Appl. Math. 14 (1961) 391-413; Reshetnyak, Siberian Math. J. 8 (1967) 631-653)] as well as an associated linearized theorem saying that .
@article{COCV_2008__14_1_148_0, author = {M\"unch, Ingo and Neff, Patrizio}, title = {Curl bounds grad on {SO(3)}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {148--159}, publisher = {EDP-Sciences}, volume = {14}, number = {1}, year = {2008}, doi = {10.1051/cocv:2007050}, mrnumber = {2375754}, zbl = {1139.74008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007050/} }
TY - JOUR AU - Münch, Ingo AU - Neff, Patrizio TI - Curl bounds grad on SO(3) JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 148 EP - 159 VL - 14 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007050/ DO - 10.1051/cocv:2007050 LA - en ID - COCV_2008__14_1_148_0 ER -
%0 Journal Article %A Münch, Ingo %A Neff, Patrizio %T Curl bounds grad on SO(3) %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 148-159 %V 14 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007050/ %R 10.1051/cocv:2007050 %G en %F COCV_2008__14_1_148_0
Münch, Ingo; Neff, Patrizio. Curl bounds grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 148-159. doi: 10.1051/cocv:2007050
Cité par Sources :