Voir la notice de l'article provenant de la source Numdam
We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function of the particle and the control is the length of the potential well. We prove the following controllability result : given close enough to an eigenstate corresponding to the length and close enough to another eigenstate corresponding to the length , there exists a continuous function with , such that and , and which moves the wave function from to in time . In particular, we can move the wave function from one eigenstate to another one by acting on the length of the potential well in a suitable way. Our proof relies on local controllability results proved with moment theory, a Nash-Moser implicit function theorem and expansions to the second order.
@article{COCV_2008__14_1_105_0, author = {Beauchard, Karine}, title = {Controllability of a quantum particle in a {1D} variable domain}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {105--147}, publisher = {EDP-Sciences}, volume = {14}, number = {1}, year = {2008}, doi = {10.1051/cocv:2007047}, mrnumber = {2375753}, zbl = {1132.35446}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007047/} }
TY - JOUR AU - Beauchard, Karine TI - Controllability of a quantum particle in a 1D variable domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 105 EP - 147 VL - 14 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007047/ DO - 10.1051/cocv:2007047 LA - en ID - COCV_2008__14_1_105_0 ER -
%0 Journal Article %A Beauchard, Karine %T Controllability of a quantum particle in a 1D variable domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 105-147 %V 14 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007047/ %R 10.1051/cocv:2007047 %G en %F COCV_2008__14_1_105_0
Beauchard, Karine. Controllability of a quantum particle in a 1D variable domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 105-147. doi: 10.1051/cocv:2007047
Cité par Sources :