Voir la notice de l'article provenant de la source Numdam
We study the stability of a sequence of integral functionals on divergence-free matrix valued fields following the direct methods of -convergence. We prove that the -limit is an integral functional on divergence-free matrix valued fields. Moreover, we show that the -limit is also stable under volume constraint and various type of boundary conditions.
@article{COCV_2007__13_4_809_0, author = {Ansini, Nadia and Garroni, Adriana}, title = {$\Gamma $-convergence of functionals on divergence-free fields}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {809--828}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007041}, mrnumber = {2351405}, zbl = {1127.49011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007041/} }
TY - JOUR AU - Ansini, Nadia AU - Garroni, Adriana TI - $\Gamma $-convergence of functionals on divergence-free fields JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 809 EP - 828 VL - 13 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007041/ DO - 10.1051/cocv:2007041 LA - en ID - COCV_2007__13_4_809_0 ER -
%0 Journal Article %A Ansini, Nadia %A Garroni, Adriana %T $\Gamma $-convergence of functionals on divergence-free fields %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 809-828 %V 13 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007041/ %R 10.1051/cocv:2007041 %G en %F COCV_2007__13_4_809_0
Ansini, Nadia; Garroni, Adriana. $\Gamma $-convergence of functionals on divergence-free fields. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 809-828. doi: 10.1051/cocv:2007041
Cité par Sources :