Voir la notice de l'article provenant de la source Numdam
We prove partial regularity with optimal Hölder exponent of vector-valued minimizers of the quasiconvex variational integral under polynomial growth. We employ the indirect method of the bilinear form.
@article{COCV_2007__13_4_639_0, author = {Hamburger, Christoph}, title = {Optimal partial regularity of minimizers of quasiconvex variational integrals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {639--656}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007039}, mrnumber = {2351395}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007039/} }
TY - JOUR AU - Hamburger, Christoph TI - Optimal partial regularity of minimizers of quasiconvex variational integrals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 639 EP - 656 VL - 13 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007039/ DO - 10.1051/cocv:2007039 LA - en ID - COCV_2007__13_4_639_0 ER -
%0 Journal Article %A Hamburger, Christoph %T Optimal partial regularity of minimizers of quasiconvex variational integrals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 639-656 %V 13 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007039/ %R 10.1051/cocv:2007039 %G en %F COCV_2007__13_4_639_0
Hamburger, Christoph. Optimal partial regularity of minimizers of quasiconvex variational integrals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 639-656. doi: 10.1051/cocv:2007039
Cité par Sources :