Morse index and bifurcation of p-geodesics on semi riemannian manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 598-621

Voir la notice de l'article provenant de la source Numdam

Given a one-parameter family {g λ :λ[a,b]} of semi riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials {V λ :λ[a,b]} and a family {σ λ :λ[a,b]} of trajectories connecting two points of the mechanical system defined by (g λ ,V λ ), we show that there are trajectories bifurcating from the trivial branch σ λ if the generalized Morse indices μ(σ a ) and μ(σ b ) are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type.

DOI : 10.1051/cocv:2007037
Classification : 58E10, 37J45, 53C22, 58J30
Keywords: generalized Morse index, semi-riemannian manifolds, perturbed geodesic, bifurcation

Musso, Monica  ; Pejsachowicz, Jacobo  ; Portaluri, Alessandro 1

1 Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-900, São Paulo, SP Brazil; Current address: Dipartimento di Matematica, Politecnico di Torino, Italy
@article{COCV_2007__13_3_598_0,
     author = {Musso, Monica and Pejsachowicz, Jacobo and Portaluri, Alessandro},
     title = {Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {598--621},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {3},
     year = {2007},
     doi = {10.1051/cocv:2007037},
     mrnumber = {2329179},
     zbl = {1127.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007037/}
}
TY  - JOUR
AU  - Musso, Monica
AU  - Pejsachowicz, Jacobo
AU  - Portaluri, Alessandro
TI  - Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 598
EP  - 621
VL  - 13
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007037/
DO  - 10.1051/cocv:2007037
LA  - en
ID  - COCV_2007__13_3_598_0
ER  - 
%0 Journal Article
%A Musso, Monica
%A Pejsachowicz, Jacobo
%A Portaluri, Alessandro
%T Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 598-621
%V 13
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007037/
%R 10.1051/cocv:2007037
%G en
%F COCV_2007__13_3_598_0
Musso, Monica; Pejsachowicz, Jacobo; Portaluri, Alessandro. Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 598-621. doi: 10.1051/cocv:2007037

Cité par Sources :