Voir la notice de l'article provenant de la source Numdam
We study a parameter () dependent relaxation of the Travelling Salesman Problem on . The relaxed problem is reduced to the Travelling Salesman Problem as 0. For increasing it is also an ordered clustering algorithm for a set of points in . A dual formulation is introduced, which reduces the problem to a convex optimization, provided the minimizer is in the domain of convexity of the relaxed functional. It is shown that this last condition is generically satisfied, provided is large enough.
@article{COCV_2007__13_3_538_0, author = {Polak, Paz and Wolansky, Gershon}, title = {The lazy travelling salesman problem in $\mathbb {R}^2$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {538--552}, publisher = {EDP-Sciences}, volume = {13}, number = {3}, year = {2007}, doi = {10.1051/cocv:2007025}, mrnumber = {2329175}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007025/} }
TY - JOUR AU - Polak, Paz AU - Wolansky, Gershon TI - The lazy travelling salesman problem in $\mathbb {R}^2$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 538 EP - 552 VL - 13 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007025/ DO - 10.1051/cocv:2007025 LA - en ID - COCV_2007__13_3_538_0 ER -
%0 Journal Article %A Polak, Paz %A Wolansky, Gershon %T The lazy travelling salesman problem in $\mathbb {R}^2$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 538-552 %V 13 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007025/ %R 10.1051/cocv:2007025 %G en %F COCV_2007__13_3_538_0
Polak, Paz; Wolansky, Gershon. The lazy travelling salesman problem in $\mathbb {R}^2$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 538-552. doi: 10.1051/cocv:2007025
Cité par Sources :