Optimal regularity for the pseudo infinity laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 294-304

Voir la notice de l'article provenant de la source Numdam

In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.

DOI : 10.1051/cocv:2007018
Classification : 35A05, 35B65, 35J15
Keywords: viscosity solutions, optimal regularity, pseudo infinity laplacian
@article{COCV_2007__13_2_294_0,
     author = {Rossi, Julio D. and Saez, Mariel},
     title = {Optimal regularity for the pseudo infinity laplacian},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {294--304},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {2},
     year = {2007},
     doi = {10.1051/cocv:2007018},
     mrnumber = {2306637},
     zbl = {1129.35087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007018/}
}
TY  - JOUR
AU  - Rossi, Julio D.
AU  - Saez, Mariel
TI  - Optimal regularity for the pseudo infinity laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 294
EP  - 304
VL  - 13
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007018/
DO  - 10.1051/cocv:2007018
LA  - en
ID  - COCV_2007__13_2_294_0
ER  - 
%0 Journal Article
%A Rossi, Julio D.
%A Saez, Mariel
%T Optimal regularity for the pseudo infinity laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 294-304
%V 13
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007018/
%R 10.1051/cocv:2007018
%G en
%F COCV_2007__13_2_294_0
Rossi, Julio D.; Saez, Mariel. Optimal regularity for the pseudo infinity laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 294-304. doi: 10.1051/cocv:2007018

Cité par Sources :