Voir la notice de l'article provenant de la source Numdam
This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [Phys. Rev. A 64 (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a -limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish the existence of large numbers of nontrivial local minimizers and we prove that, given any such local minimizer, the Gross-Pitaevsky functional has a local minimizer that is nearby (in a suitable sense) whenever a scaling parameter is sufficiently small.
@article{COCV_2007__13_1_35_0, author = {Jerrard, Robert L.}, title = {Local minimizers with vortex filaments for a {Gross-Pitaevsky} functional}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {35--71}, publisher = {EDP-Sciences}, volume = {13}, number = {1}, year = {2007}, doi = {10.1051/cocv:2007004}, mrnumber = {2282101}, zbl = {1111.35077}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007004/} }
TY - JOUR AU - Jerrard, Robert L. TI - Local minimizers with vortex filaments for a Gross-Pitaevsky functional JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 35 EP - 71 VL - 13 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007004/ DO - 10.1051/cocv:2007004 LA - en ID - COCV_2007__13_1_35_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T Local minimizers with vortex filaments for a Gross-Pitaevsky functional %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 35-71 %V 13 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007004/ %R 10.1051/cocv:2007004 %G en %F COCV_2007__13_1_35_0
Jerrard, Robert L. Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 35-71. doi: 10.1051/cocv:2007004
Cité par Sources :