On an optimal shape design problem in conduction
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 699-720

Voir la notice de l'article provenant de la source Numdam

In this paper we analyze a typical shape optimization problem in two-dimensional conductivity. We study relaxation for this problem itself. We also analyze the question of the approximation of this problem by the two-phase optimal design problems obtained when we fill out the holes that we want to design in the original problem by a very poor conductor, that we make to converge to zero.

DOI : 10.1051/cocv:2006018
Classification : 49J45, 49Q10
Keywords: optimal shape design, relaxation, variational approach, $\Gamma $-convergence, semiconvex envelopes, quasiconvexity
@article{COCV_2006__12_4_699_0,
     author = {Bellido, Jos\'e Carlos},
     title = {On an optimal shape design problem in conduction},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {699--720},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006018},
     mrnumber = {2266814},
     zbl = {1111.49028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006018/}
}
TY  - JOUR
AU  - Bellido, José Carlos
TI  - On an optimal shape design problem in conduction
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 699
EP  - 720
VL  - 12
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006018/
DO  - 10.1051/cocv:2006018
LA  - en
ID  - COCV_2006__12_4_699_0
ER  - 
%0 Journal Article
%A Bellido, José Carlos
%T On an optimal shape design problem in conduction
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 699-720
%V 12
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006018/
%R 10.1051/cocv:2006018
%G en
%F COCV_2006__12_4_699_0
Bellido, José Carlos. On an optimal shape design problem in conduction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 699-720. doi: 10.1051/cocv:2006018

Cité par Sources :