The geometrical quantity in damped wave equations on a square
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 636-661

Voir la notice de l'article provenant de la source Numdam

The energy in a square membrane Ω subject to constant viscous damping on a subset ωΩ decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate τ(ω) of this decay satisfies τ(ω)=2min(-μ(ω),g(ω)) (see Lebeau [Math. Phys. Stud. 19 (1996) 73-109]). Here μ(ω) denotes the spectral abscissa of the damped wave equation operator and g(ω) is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion of a mass-point in Ω subject to elastic reflections on the boundary. These reflections obey the law of geometrical optics. The geometrical quantity g(ω) is then defined as the upper limit (large time asymptotics) of the average trajectory length. We give here an algorithm to compute explicitly g(ω) when ω is a finite union of squares.

DOI : 10.1051/cocv:2006015
Classification : 35L05, 93D15
Keywords: damped wave equation, mathematical billards
@article{COCV_2006__12_4_636_0,
     author = {H\'ebrard, Pascal and Humbert, Emmanuel},
     title = {The geometrical quantity in damped wave equations on a square},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {636--661},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006015},
     mrnumber = {2266812},
     zbl = {1108.35105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006015/}
}
TY  - JOUR
AU  - Hébrard, Pascal
AU  - Humbert, Emmanuel
TI  - The geometrical quantity in damped wave equations on a square
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 636
EP  - 661
VL  - 12
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006015/
DO  - 10.1051/cocv:2006015
LA  - en
ID  - COCV_2006__12_4_636_0
ER  - 
%0 Journal Article
%A Hébrard, Pascal
%A Humbert, Emmanuel
%T The geometrical quantity in damped wave equations on a square
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 636-661
%V 12
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006015/
%R 10.1051/cocv:2006015
%G en
%F COCV_2006__12_4_636_0
Hébrard, Pascal; Humbert, Emmanuel. The geometrical quantity in damped wave equations on a square. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 636-661. doi: 10.1051/cocv:2006015

Cité par Sources :