Voir la notice de l'article provenant de la source Numdam
The energy in a square membrane subject to constant viscous damping on a subset decays exponentially in time as soon as satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate of this decay satisfies (see Lebeau [Math. Phys. Stud. 19 (1996) 73-109]). Here denotes the spectral abscissa of the damped wave equation operator and is a number called the geometrical quantity of and defined as follows. A ray in is the trajectory generated by the free motion of a mass-point in subject to elastic reflections on the boundary. These reflections obey the law of geometrical optics. The geometrical quantity is then defined as the upper limit (large time asymptotics) of the average trajectory length. We give here an algorithm to compute explicitly when is a finite union of squares.
@article{COCV_2006__12_4_636_0, author = {H\'ebrard, Pascal and Humbert, Emmanuel}, title = {The geometrical quantity in damped wave equations on a square}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {636--661}, publisher = {EDP-Sciences}, volume = {12}, number = {4}, year = {2006}, doi = {10.1051/cocv:2006015}, mrnumber = {2266812}, zbl = {1108.35105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006015/} }
TY - JOUR AU - Hébrard, Pascal AU - Humbert, Emmanuel TI - The geometrical quantity in damped wave equations on a square JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 636 EP - 661 VL - 12 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006015/ DO - 10.1051/cocv:2006015 LA - en ID - COCV_2006__12_4_636_0 ER -
%0 Journal Article %A Hébrard, Pascal %A Humbert, Emmanuel %T The geometrical quantity in damped wave equations on a square %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 636-661 %V 12 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006015/ %R 10.1051/cocv:2006015 %G en %F COCV_2006__12_4_636_0
Hébrard, Pascal; Humbert, Emmanuel. The geometrical quantity in damped wave equations on a square. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 636-661. doi: 10.1051/cocv:2006015
Cité par Sources :