Gradient flows of non convex functionals in Hilbert spaces and applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 564-614

Voir la notice de l'article provenant de la source Numdam

This paper addresses the Cauchy problem for the gradient flow equation in a Hilbert space

u ' (t)+ φ(u(t))f(t)a.e.in(0,T),u(0)=u 0 ,
where φ:(-,+] is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and φ is (a suitable limiting version of) its subdifferential. We will present some new existence results for the solutions of the equation by exploiting a variational approximation technique, featuring some ideas from the theory of Minimizing Movements and of Young measures. Our analysis is also motivated by some models describing phase transitions phenomena, leading to systems of evolutionary PDEs which have a common underlying gradient flow structure: in particular, we will focus on quasistationary models, which exhibit highly non convex Lyapunov functionals.

DOI : 10.1051/cocv:2006013
Classification : 35A15, 35K50, 35K85, 58D25, 80A22
Keywords: evolution problems, gradient flows, minimizing movements, Young measures, phase transitions, quasistationary models
@article{COCV_2006__12_3_564_0,
     author = {Rossi, Riccarda and Savar\'e, Giusepp},
     title = {Gradient flows of non convex functionals in {Hilbert} spaces and applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {564--614},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {2006},
     doi = {10.1051/cocv:2006013},
     mrnumber = {2224826},
     zbl = {1116.34048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006013/}
}
TY  - JOUR
AU  - Rossi, Riccarda
AU  - Savaré, Giusepp
TI  - Gradient flows of non convex functionals in Hilbert spaces and applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 564
EP  - 614
VL  - 12
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006013/
DO  - 10.1051/cocv:2006013
LA  - en
ID  - COCV_2006__12_3_564_0
ER  - 
%0 Journal Article
%A Rossi, Riccarda
%A Savaré, Giusepp
%T Gradient flows of non convex functionals in Hilbert spaces and applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 564-614
%V 12
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006013/
%R 10.1051/cocv:2006013
%G en
%F COCV_2006__12_3_564_0
Rossi, Riccarda; Savaré, Giusepp. Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 564-614. doi: 10.1051/cocv:2006013

Cité par Sources :