Towards a two-scale calculus
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 371-397

Voir la notice de l'article provenant de la source Numdam

We define and characterize weak and strong two-scale convergence in L p , C 0 and other spaces via a transformation of variable, extending Nguetseng’s definition. We derive several properties, including weak and strong two-scale compactness; in particular we prove two-scale versions of theorems of Ascoli-Arzelà, Chacon, Riesz, and Vitali. We then approximate two-scale derivatives, and define two-scale convergence in spaces of either weakly or strongly differentiable functions. We also derive two-scale versions of the classic theorems of Rellich, Sobolev, and Morrey.

DOI : 10.1051/cocv:2006012
Classification : 35B27, 35J20, 74Q, 78M40
Keywords: two-scale convergence, two-scale decomposition, Sobolev spaces, homogenization
@article{COCV_2006__12_3_371_0,
     author = {Visintin, Augusto},
     title = {Towards a two-scale calculus},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {371--397},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {2006},
     doi = {10.1051/cocv:2006012},
     mrnumber = {2224819},
     zbl = {1110.35009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006012/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Towards a two-scale calculus
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 371
EP  - 397
VL  - 12
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006012/
DO  - 10.1051/cocv:2006012
LA  - en
ID  - COCV_2006__12_3_371_0
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Towards a two-scale calculus
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 371-397
%V 12
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006012/
%R 10.1051/cocv:2006012
%G en
%F COCV_2006__12_3_371_0
Visintin, Augusto. Towards a two-scale calculus. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 371-397. doi: 10.1051/cocv:2006012

Cité par Sources :