Null controllability of the heat equation with boundary Fourier conditions : the linear case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 442-465.

Voir la notice de l'article provenant de la source Numdam

In this paper, we prove the global null controllability of the linear heat equation completed with linear Fourier boundary conditions of the form y n+βy=0. We consider distributed controls with support in a small set and nonregular coefficients β=β(x,t). For the proof of null controllability, a crucial tool will be a new Carleman estimate for the weak solutions of the classical heat equation with nonhomogeneous Neumann boundary conditions.

DOI : 10.1051/cocv:2006010
Classification : 35K20, 93B05
Keywords: controllability, heat equation, Fourier conditions

Fernández-Cara, Enrique  ; González-Burgos, Manuel  ; Guerrero, Sergio 1 ; Puel, Jean-Pierre 2

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, boîte courrier 187, 75035 Cedex 05, Paris, France;
2 Laboratoire de Mathématiques Appliquées, Université de Versailles – St. Quentin, 45 avenue des États-Unis, 78035 Versailles, France; ; Laboratoire de Mathématiques Appliquées, Université de Versailles, St. Quentin, 45 avenue des États-Unis, 78035 Versailles, France;
@article{COCV_2006__12_3_442_0,
     author = {Fern\'andez-Cara, Enrique and Gonz\'alez-Burgos, Manuel and Guerrero, Sergio and Puel, Jean-Pierre},
     title = {Null controllability of the heat equation with boundary {Fourier} conditions : the linear case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {442--465},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {2006},
     doi = {10.1051/cocv:2006010},
     mrnumber = {2224822},
     zbl = {1106.93009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006010/}
}
TY  - JOUR
AU  - Fernández-Cara, Enrique
AU  - González-Burgos, Manuel
AU  - Guerrero, Sergio
AU  - Puel, Jean-Pierre
TI  - Null controllability of the heat equation with boundary Fourier conditions : the linear case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 442
EP  - 465
VL  - 12
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006010/
DO  - 10.1051/cocv:2006010
LA  - en
ID  - COCV_2006__12_3_442_0
ER  - 
%0 Journal Article
%A Fernández-Cara, Enrique
%A González-Burgos, Manuel
%A Guerrero, Sergio
%A Puel, Jean-Pierre
%T Null controllability of the heat equation with boundary Fourier conditions : the linear case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 442-465
%V 12
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006010/
%R 10.1051/cocv:2006010
%G en
%F COCV_2006__12_3_442_0
Fernández-Cara, Enrique; González-Burgos, Manuel; Guerrero, Sergio; Puel, Jean-Pierre. Null controllability of the heat equation with boundary Fourier conditions : the linear case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 442-465. doi : 10.1051/cocv:2006010. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006010/

[1] V. Barbu, Controllability of parabolic and Navier-Stokes equations. Sci. Math. Jpn 56 (2002) 143-211. | Zbl

[2] A. Doubova, E. Fernández-Cara and M. González-Burgos, On the controllability of the heat equation with nonlinear boundary Fourier conditions. J. Diff. Equ. 196 (2004) 385-417. | Zbl

[3] C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh 125A (1995) 31-61. | Zbl

[4] E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Diff. Equ. 5 (2000) 465-514. | Zbl

[5] A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Lecture Notes no. 34, Seoul National University, Korea, 1996. | Zbl | MR

[6] O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Dekker, New York. Lect. Notes Pure Appl. Math. 218 (2001). | Zbl | MR

[7] G. Lebeau and L. Robbiano, Contrôle exacte de l'equation de la chaleur (French). Comm. Partial Differ. Equat. 20 (1995) 335-356. | Zbl

[8] D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies Appl. Math. 52 (1973) 189-211. | Zbl

Cité par Sources :