Neumann boundary value problems across resonance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408

Voir la notice de l'article provenant de la source Numdam

We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.

DOI : 10.1051/cocv:2006009
Classification : 34B15, 47H15
Keywords: second order Newmann boundary condition, resonance, Pontryagin's maximum principle
@article{COCV_2006__12_3_398_0,
     author = {L\'opez, Gin\'es and Montero-S\'anchez, Juan-Aurelio},
     title = {Neumann boundary value problems across resonance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {398--408},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {2006},
     doi = {10.1051/cocv:2006009},
     mrnumber = {2224820},
     zbl = {1123.34011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006009/}
}
TY  - JOUR
AU  - López, Ginés
AU  - Montero-Sánchez, Juan-Aurelio
TI  - Neumann boundary value problems across resonance
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 398
EP  - 408
VL  - 12
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006009/
DO  - 10.1051/cocv:2006009
LA  - en
ID  - COCV_2006__12_3_398_0
ER  - 
%0 Journal Article
%A López, Ginés
%A Montero-Sánchez, Juan-Aurelio
%T Neumann boundary value problems across resonance
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 398-408
%V 12
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006009/
%R 10.1051/cocv:2006009
%G en
%F COCV_2006__12_3_398_0
López, Ginés; Montero-Sánchez, Juan-Aurelio. Neumann boundary value problems across resonance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408. doi: 10.1051/cocv:2006009

Cité par Sources :