Neumann boundary value problems across resonance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408
Voir la notice de l'article provenant de la source Numdam
We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.
DOI :
10.1051/cocv:2006009
Classification :
34B15, 47H15
Keywords: second order Newmann boundary condition, resonance, Pontryagin's maximum principle
Keywords: second order Newmann boundary condition, resonance, Pontryagin's maximum principle
@article{COCV_2006__12_3_398_0,
author = {L\'opez, Gin\'es and Montero-S\'anchez, Juan-Aurelio},
title = {Neumann boundary value problems across resonance},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {398--408},
publisher = {EDP-Sciences},
volume = {12},
number = {3},
year = {2006},
doi = {10.1051/cocv:2006009},
mrnumber = {2224820},
zbl = {1123.34011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006009/}
}
TY - JOUR AU - López, Ginés AU - Montero-Sánchez, Juan-Aurelio TI - Neumann boundary value problems across resonance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 398 EP - 408 VL - 12 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006009/ DO - 10.1051/cocv:2006009 LA - en ID - COCV_2006__12_3_398_0 ER -
%0 Journal Article %A López, Ginés %A Montero-Sánchez, Juan-Aurelio %T Neumann boundary value problems across resonance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 398-408 %V 12 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006009/ %R 10.1051/cocv:2006009 %G en %F COCV_2006__12_3_398_0
López, Ginés; Montero-Sánchez, Juan-Aurelio. Neumann boundary value problems across resonance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408. doi: 10.1051/cocv:2006009
Cité par Sources :