Voir la notice de l'article provenant de la source Numdam
In this paper we deal with the local exact controllability of the Navier-Stokes system with nonlinear Navier-slip boundary conditions and distributed controls supported in small sets. In a first step, we prove a Carleman inequality for the linearized Navier-Stokes system, which leads to null controllability of this system at any time . Then, fixed point arguments lead to the deduction of a local result concerning the exact controllability to the trajectories of the Navier-Stokes system.
Guerrero, Sergio 1
@article{COCV_2006__12_3_484_0, author = {Guerrero, Sergio}, title = {Local exact controllability to the trajectories of the {Navier-Stokes} system with nonlinear {Navier-slip} boundary conditions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {484--544}, publisher = {EDP-Sciences}, volume = {12}, number = {3}, year = {2006}, doi = {10.1051/cocv:2006006}, mrnumber = {2224824}, zbl = {1106.93011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006006/} }
TY - JOUR AU - Guerrero, Sergio TI - Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 484 EP - 544 VL - 12 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006006/ DO - 10.1051/cocv:2006006 LA - en ID - COCV_2006__12_3_484_0 ER -
%0 Journal Article %A Guerrero, Sergio %T Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 484-544 %V 12 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006006/ %R 10.1051/cocv:2006006 %G en %F COCV_2006__12_3_484_0
Guerrero, Sergio. Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 484-544. doi: 10.1051/cocv:2006006
Cité par Sources :