Voir la notice de l'article provenant de la source Numdam
We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
@article{COCV_2006__12_1_120_0, author = {Nour, Chadi}, title = {Semigeodesics and the minimal time function}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {120--138}, publisher = {EDP-Sciences}, volume = {12}, number = {1}, year = {2006}, doi = {10.1051/cocv:2005032}, mrnumber = {2192071}, zbl = {1114.49028}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005032/} }
TY - JOUR AU - Nour, Chadi TI - Semigeodesics and the minimal time function JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 120 EP - 138 VL - 12 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005032/ DO - 10.1051/cocv:2005032 LA - en ID - COCV_2006__12_1_120_0 ER -
%0 Journal Article %A Nour, Chadi %T Semigeodesics and the minimal time function %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 120-138 %V 12 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005032/ %R 10.1051/cocv:2005032 %G en %F COCV_2006__12_1_120_0
Nour, Chadi. Semigeodesics and the minimal time function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 120-138. doi: 10.1051/cocv:2005032
Cité par Sources :