Optimal control problems on parallelizable riemannian manifolds : theory and applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 1-11

Voir la notice de l'article provenant de la source Numdam

The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group SE(3), which is also a parallelizable riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions employing calculus of variations. The use of frame co-ordinates means that intrinsic quantities like the Levi-Civita connection and riemannian curvature tensor appear in the equations for the co-states. The resulting equations are singularity-free and considerably simpler (from a numerical perspective) than those obtained using a local co-ordinates representation, and are thus better from a computational point of view. The first order necessary conditions result in a two point boundary value problem which we successfully solve by means of a Modified Simple Shooting Method.

DOI : 10.1051/cocv:2005026
Classification : 49K99, 49M05, 49Q99, 90C99, 93C10
Keywords: regular optimal control, simple mechanical systems, calculus of variations, numerical solution, modified simple shooting method

Iyer, Ram V.  ; Holsapple, Raymond  ; Doman, David 1

1 U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7531, USA.
@article{COCV_2006__12_1_1_0,
     author = {Iyer, Ram V. and Holsapple, Raymond and Doman, David},
     title = {Optimal control problems on parallelizable riemannian manifolds : theory and applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--11},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {1},
     year = {2006},
     doi = {10.1051/cocv:2005026},
     mrnumber = {2192065},
     zbl = {1108.49022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005026/}
}
TY  - JOUR
AU  - Iyer, Ram V.
AU  - Holsapple, Raymond
AU  - Doman, David
TI  - Optimal control problems on parallelizable riemannian manifolds : theory and applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 1
EP  - 11
VL  - 12
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005026/
DO  - 10.1051/cocv:2005026
LA  - en
ID  - COCV_2006__12_1_1_0
ER  - 
%0 Journal Article
%A Iyer, Ram V.
%A Holsapple, Raymond
%A Doman, David
%T Optimal control problems on parallelizable riemannian manifolds : theory and applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 1-11
%V 12
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005026/
%R 10.1051/cocv:2005026
%G en
%F COCV_2006__12_1_1_0
Iyer, Ram V.; Holsapple, Raymond; Doman, David. Optimal control problems on parallelizable riemannian manifolds : theory and applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 1-11. doi: 10.1051/cocv:2005026

Cité par Sources :