Entire solutions in 2 for a class of Allen-Cahn equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 633-672

Voir la notice de l'article provenant de la source Numdam

We consider a class of semilinear elliptic equations of the form

-ε 2 Δu(x,y)+a(x)W ' (u(x,y))=0,(x,y) 2
where ε>0, a: is a periodic, positive function and W: is modeled on the classical two well Ginzburg-Landau potential W(s)=(s 2 -1) 2 . We look for solutions to (1) which verify the asymptotic conditions u(x,y)±1 as x± uniformly with respect to y. We show via variational methods that if ε is sufficiently small and a is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.

DOI : 10.1051/cocv:2005023
Classification : 34C37, 35B05, 35B40, 35J20, 35J60
Keywords: heteroclinic solutions, elliptic equations, variational methods
@article{COCV_2005__11_4_633_0,
     author = {Alessio, Francesca and Montecchiari, Piero},
     title = {Entire solutions in $\mathbb {R}^{2}$ for a class of {Allen-Cahn} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {633--672},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {4},
     year = {2005},
     doi = {10.1051/cocv:2005023},
     mrnumber = {2167878},
     zbl = {1084.35020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005023/}
}
TY  - JOUR
AU  - Alessio, Francesca
AU  - Montecchiari, Piero
TI  - Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 633
EP  - 672
VL  - 11
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005023/
DO  - 10.1051/cocv:2005023
LA  - en
ID  - COCV_2005__11_4_633_0
ER  - 
%0 Journal Article
%A Alessio, Francesca
%A Montecchiari, Piero
%T Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 633-672
%V 11
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005023/
%R 10.1051/cocv:2005023
%G en
%F COCV_2005__11_4_633_0
Alessio, Francesca; Montecchiari, Piero. Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 633-672. doi: 10.1051/cocv:2005023

Cité par Sources :