Monge solutions for discontinuous hamiltonians
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 229-251

Voir la notice de l'article provenant de la source Numdam

We consider an Hamilton-Jacobi equation of the form

H(x,Du)=0xΩ N ,(1)
where H(x,p) is assumed Borel measurable and quasi-convex in p. The notion of Monge solution, introduced by Newcomb and Su, is adapted to this setting making use of suitable metric devices. We establish the comparison principle for Monge sub and supersolution, existence and uniqueness for equation (1) coupled with Dirichlet boundary conditions, and a stability result. The relation among Monge and Lipschitz subsolutions is also discussed.

DOI : 10.1051/cocv:2005004
Classification : 49J25, 35C15, 35R05
Keywords: viscosity solution, lax formula, Finsler metric
@article{COCV_2005__11_2_229_0,
     author = {Briani, Ariela and Davini, Andrea},
     title = {Monge solutions for discontinuous hamiltonians},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {229--251},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {2},
     year = {2005},
     doi = {10.1051/cocv:2005004},
     mrnumber = {2141888},
     zbl = {1087.35023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005004/}
}
TY  - JOUR
AU  - Briani, Ariela
AU  - Davini, Andrea
TI  - Monge solutions for discontinuous hamiltonians
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 229
EP  - 251
VL  - 11
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005004/
DO  - 10.1051/cocv:2005004
LA  - en
ID  - COCV_2005__11_2_229_0
ER  - 
%0 Journal Article
%A Briani, Ariela
%A Davini, Andrea
%T Monge solutions for discontinuous hamiltonians
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 229-251
%V 11
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005004/
%R 10.1051/cocv:2005004
%G en
%F COCV_2005__11_2_229_0
Briani, Ariela; Davini, Andrea. Monge solutions for discontinuous hamiltonians. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 229-251. doi: 10.1051/cocv:2005004

Cité par Sources :