A differential inclusion : the case of an isotropic set
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 122-138

Voir la notice de l'article provenant de la source Numdam

In this article we are interested in the following problem: to find a map u:Ω 2 that satisfies

DuEa.e.inΩu(x)=ϕ(x)xΩ
where Ω is an open set of 2 and E is a compact isotropic set of 2×2 . We will show an existence theorem under suitable hypotheses on ϕ.

DOI : 10.1051/cocv:2004035
Classification : 34A60, 35F30, 52A30
Keywords: rank one convex hull, polyconvex hull, differential inclusion, isotropic set
@article{COCV_2005__11_1_122_0,
     author = {Croce, Gisella},
     title = {A differential inclusion : the case of an isotropic set},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {122--138},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {1},
     year = {2005},
     doi = {10.1051/cocv:2004035},
     mrnumber = {2110617},
     zbl = {1092.34004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004035/}
}
TY  - JOUR
AU  - Croce, Gisella
TI  - A differential inclusion : the case of an isotropic set
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 122
EP  - 138
VL  - 11
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004035/
DO  - 10.1051/cocv:2004035
LA  - en
ID  - COCV_2005__11_1_122_0
ER  - 
%0 Journal Article
%A Croce, Gisella
%T A differential inclusion : the case of an isotropic set
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 122-138
%V 11
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004035/
%R 10.1051/cocv:2004035
%G en
%F COCV_2005__11_1_122_0
Croce, Gisella. A differential inclusion : the case of an isotropic set. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 122-138. doi: 10.1051/cocv:2004035

Cité par Sources :