An optimal matching problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 57-71

Voir la notice de l'article provenant de la source Numdam

Given two measured spaces (X,μ) and (Y,ν), and a third space Z, given two functions u(x,z) and v(x,z), we study the problem of finding two maps s:XZ and t:YZ such that the images s(μ) and t(ν) coincide, and the integral X u(x,s(x))dμ- Y v(y,t(y))dν is maximal. We give condition on u and v for which there is a unique solution.

DOI : 10.1051/cocv:2004034
Classification : 05C38, 15A15, 05A15, 15A18
Keywords: optimal transportation, measure-preserving maps
@article{COCV_2005__11_1_57_0,
     author = {Ekeland, Ivar},
     title = {An optimal matching problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {57--71},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {1},
     year = {2005},
     doi = {10.1051/cocv:2004034},
     mrnumber = {2110613},
     zbl = {1106.49054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004034/}
}
TY  - JOUR
AU  - Ekeland, Ivar
TI  - An optimal matching problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 57
EP  - 71
VL  - 11
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004034/
DO  - 10.1051/cocv:2004034
LA  - en
ID  - COCV_2005__11_1_57_0
ER  - 
%0 Journal Article
%A Ekeland, Ivar
%T An optimal matching problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 57-71
%V 11
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004034/
%R 10.1051/cocv:2004034
%G en
%F COCV_2005__11_1_57_0
Ekeland, Ivar. An optimal matching problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 57-71. doi: 10.1051/cocv:2004034

Cité par Sources :