Voir la notice de l'article provenant de la source Numdam
In the framework of transport theory, we are interested in the following optimization problem: given the distributions of working people and of their working places in an urban area, build a transportation network (such as a railway or an underground system) which minimizes a functional depending on the geometry of the network through a particular cost function. The functional is defined as the Wasserstein distance of from with respect to a metric which depends on the transportation network.
@article{COCV_2005__11_1_88_0, author = {Brancolini, Alessio and Buttazzo, Giuseppe}, title = {Optimal networks for mass transportation problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {88--101}, publisher = {EDP-Sciences}, volume = {11}, number = {1}, year = {2005}, doi = {10.1051/cocv:2004032}, mrnumber = {2110615}, zbl = {1103.49002}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004032/} }
TY - JOUR AU - Brancolini, Alessio AU - Buttazzo, Giuseppe TI - Optimal networks for mass transportation problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 88 EP - 101 VL - 11 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004032/ DO - 10.1051/cocv:2004032 LA - en ID - COCV_2005__11_1_88_0 ER -
%0 Journal Article %A Brancolini, Alessio %A Buttazzo, Giuseppe %T Optimal networks for mass transportation problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 88-101 %V 11 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004032/ %R 10.1051/cocv:2004032 %G en %F COCV_2005__11_1_88_0
Brancolini, Alessio; Buttazzo, Giuseppe. Optimal networks for mass transportation problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 88-101. doi: 10.1051/cocv:2004032
Cité par Sources :