Voir la notice de l'article provenant de la source Numdam
A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as is examined.
@article{COCV_2004__10_4_574_0, author = {Chrysafinos, Konstantinos}, title = {Analysis and finite element error estimates for the velocity tracking problem for {Stokes} flows via a penalized formulation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {574--592}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004021}, mrnumber = {2111081}, zbl = {1072.49021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004021/} }
TY - JOUR AU - Chrysafinos, Konstantinos TI - Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 574 EP - 592 VL - 10 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004021/ DO - 10.1051/cocv:2004021 LA - en ID - COCV_2004__10_4_574_0 ER -
%0 Journal Article %A Chrysafinos, Konstantinos %T Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 574-592 %V 10 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004021/ %R 10.1051/cocv:2004021 %G en %F COCV_2004__10_4_574_0
Chrysafinos, Konstantinos. Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 574-592. doi: 10.1051/cocv:2004021
Cité par Sources :