Voir la notice de l'article provenant de la source Numdam
In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.
Petcu, Madalina  ; Temam, Roger 1
@article{COCV_2004__10_4_553_0, author = {Petcu, Madalina and Temam, Roger}, title = {Control for the {Sine-Gordon} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {553--573}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004020}, mrnumber = {2111080}, zbl = {1087.49004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004020/} }
TY - JOUR AU - Petcu, Madalina AU - Temam, Roger TI - Control for the Sine-Gordon equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 553 EP - 573 VL - 10 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004020/ DO - 10.1051/cocv:2004020 LA - en ID - COCV_2004__10_4_553_0 ER -
%0 Journal Article %A Petcu, Madalina %A Temam, Roger %T Control for the Sine-Gordon equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 553-573 %V 10 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004020/ %R 10.1051/cocv:2004020 %G en %F COCV_2004__10_4_553_0
Petcu, Madalina; Temam, Roger. Control for the Sine-Gordon equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 553-573. doi: 10.1051/cocv:2004020
Cité par Sources :