Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 3, pp. 426-451

Voir la notice de l'article provenant de la source Numdam

We formulate an Hamilton-Jacobi partial differential equation

H(x,Du(x))=0
on a n dimensional manifold M, with assumptions of convexity of H(x,·) and regularity of H (locally in a neighborhood of {H=0} in T * M); we define the “min solution” u, a generalized solution; to this end, we view T * M as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about u; in particular, we prove in the first part that the closure of the set where u is not regular may be covered by a countable number of n-1 dimensional manifolds, but for a n-1 negligeable subset. These results can be applied to the cutlocus of a C 2 submanifold of a Finsler manifold.

DOI : 10.1051/cocv:2004014
Classification : 49L25, 53C22, 53C60
Keywords: Hamilton-Jacobi equations, conjugate points
@article{COCV_2004__10_3_426_0,
     author = {Mennucci, Andrea C. G.},
     title = {Regularity and variationality of solutions to {Hamilton-Jacobi} equations. {Part} {I} : regularity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {426--451},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {3},
     year = {2004},
     doi = {10.1051/cocv:2004014},
     mrnumber = {2084331},
     zbl = {1085.49040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004014/}
}
TY  - JOUR
AU  - Mennucci, Andrea C. G.
TI  - Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 426
EP  - 451
VL  - 10
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004014/
DO  - 10.1051/cocv:2004014
LA  - en
ID  - COCV_2004__10_3_426_0
ER  - 
%0 Journal Article
%A Mennucci, Andrea C. G.
%T Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 426-451
%V 10
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004014/
%R 10.1051/cocv:2004014
%G en
%F COCV_2004__10_3_426_0
Mennucci, Andrea C. G. Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 3, pp. 426-451. doi: 10.1051/cocv:2004014

Cité par Sources :