Voir la notice de l'article provenant de la source Numdam
Let be a real Hilbert space, a convex function of class that we wish to minimize under the convex constraint . A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function whose critical points coincide with and a control parameter tending to zero, we consider the “Steepest Descent and Control” system
@article{COCV_2004__10_2_243_0, author = {Cabot, Alexandre}, title = {The steepest descent dynamical system with control. {Applications} to constrained minimization}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {243--258}, publisher = {EDP-Sciences}, volume = {10}, number = {2}, year = {2004}, doi = {10.1051/cocv:2004005}, mrnumber = {2083486}, zbl = {1072.49004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004005/} }
TY - JOUR AU - Cabot, Alexandre TI - The steepest descent dynamical system with control. Applications to constrained minimization JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 243 EP - 258 VL - 10 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004005/ DO - 10.1051/cocv:2004005 LA - en ID - COCV_2004__10_2_243_0 ER -
%0 Journal Article %A Cabot, Alexandre %T The steepest descent dynamical system with control. Applications to constrained minimization %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 243-258 %V 10 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2004005/ %R 10.1051/cocv:2004005 %G en %F COCV_2004__10_2_243_0
Cabot, Alexandre. The steepest descent dynamical system with control. Applications to constrained minimization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 243-258. doi: 10.1051/cocv:2004005
Cité par Sources :